Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains.

نویسندگان

  • H C Pinkart
  • D C White
چکیده

The role of the cell envelope in the solvent tolerance mechanisms of Pseudomonas putida was investigated. The responses of a solvent-tolerant strain, P. putida Idaho, and a solvent-sensitive strain, P. putida MW1200, were examined in terms of phospholipid content and composition and of phospholipid biosynthetic rate following exposure to a nonmetabolizable solvent, o-xylene. Following o-xylene exposure, P. putida MW1200 exhibited a decrease in total phospholipid content. In contrast, P. putida Idaho demonstrated an increase in phospholipid content 1 to 6 h after exposure. Analysis of phospholipid biosynthesis showed P. putida Idaho to have a higher basal rate of phospholipid synthesis than MW1200. This rate increased significantly following exposure to xylene. Both strains showed little significant turnover of phospholipid in the absence of xylene. In the presence of xylene, both strains showed increased phospholipid turnover. The rate of turnover was significantly greater in P. putida Idaho than in P. putida MW1200. These results suggest that P. putida Idaho has a greater ability than the solvent-sensitive strain MW1200 to repair damaged membranes through efficient turnover and increased phospholipid biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolite Profiling Reveals Abiotic Stress Tolerance in Tn5 Mutant of Pseudomonas putida

Pseudomonas is an efficient plant growth-promoting rhizobacteria (PGPR); however, intolerance to drought and high temperature limit its application in agriculture as a bioinoculant. Transposon 5 (Tn5) mutagenesis was used to generate a stress tolerant mutant from a PGPR Pseudomonas putida NBRI1108 isolated from chickpea rhizosphere. A mutant NBRI1108T, selected after screening of nearly 10,000 ...

متن کامل

Regulation of solvent tolerance in Pseudomonas putida S12 mediated by mobile elements

Organic solvent-tolerant bacteria are outstanding and versatile hosts for the bio-based production of a broad range of generally toxic aromatic compounds. The energetically costly solvent tolerance mechanisms are subject to multiple levels of regulation, involving among other mobile genetic elements. The genome of the solvent-tolerant Pseudomonas putida S12 contains many such mobile elements th...

متن کامل

Cell Envelope Changes in Solvent-Tolerant and Solvent-Sensitive Pseudomonas putida Strains following Exposure to o-Xylene.

Solvent-tolerant and -sensitive Pseudomonas putida strains were studied to determine their cell envelope changes following exposure to o-xylene. Both strains produced trans-unsaturated fatty acids. The tolerant strain showed an increase in total fatty acids, an increase in saturated fatty acids, and modified lipopolysaccharide. It is suggested that these envelope modifications aid in survival a...

متن کامل

Mechanisms for solvent tolerance in bacteria.

The development of tolerance in Pseudomonas putida DOT-T1 to toluene and related highly toxic compounds involves short- and long-term responses. The short-term response is based on an increase in the rigidity of the cell membrane by rapid transformation of the fatty acid cis-9,10-methylene hexadecanoic acid (C17:cyclopropane) to unsaturated 9-cis-hexadecenoic acid (C16:1,9 cis) and subsequent t...

متن کامل

Global transcriptional response of solvent-sensitive and solvent-tolerant Pseudomonas putida strains exposed to toluene.

Pseudomonas putida strains are generally recognized as solvent tolerant, exhibiting varied sensitivity to organic solvents. Pan-genome analysis has revealed that 30% of genes belong to the core-genome of Pseudomonas. Accessory and unique genes confer high degree of adaptability and capabilities for the degradation and synthesis of a wide range of chemicals. For the use of these microbes in bior...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 13  شماره 

صفحات  -

تاریخ انتشار 1997